41,306 research outputs found

    Discrete Fourier analysis with lattices on planar domains

    Full text link
    A discrete Fourier analysis associated with translation lattices is developed recently by the authors. It permits two lattices, one determining the integral domain and the other determining the family of exponential functions. Possible choices of lattices are discussed in the case of lattices that tile \RR^2 and several new results on cubature and interpolation by trigonometric, as well as algebraic, polynomials are obtained

    Discrete Fourier Analysis and Chebyshev Polynomials with G2G_2 Group

    Full text link
    The discrete Fourier analysis on the 30°30^{\degree}-60°60^{\degree}-90°90^{\degree} triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G2G_2, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of mm-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type

    Discrete Fourier analysis, Cubature and Interpolation on a Hexagon and a Triangle

    Full text link
    Several problems of trigonometric approximation on a hexagon and a triangle are studied using the discrete Fourier transform and orthogonal polynomials of two variables. A discrete Fourier analysis on the regular hexagon is developed in detail, from which the analysis on the triangle is deduced. The results include cubature formulas and interpolation on these domains. In particular, a trigonometric Lagrange interpolation on a triangle is shown to satisfy an explicit compact formula, which is equivalent to the polynomial interpolation on a planer region bounded by Steiner's hypocycloid. The Lebesgue constant of the interpolation is shown to be in the order of (logn)2(\log n)^2. Furthermore, a Gauss cubature is established on the hypocycloid.Comment: 29 page

    Pairing Properties of Symmetric Nuclear Matter in Relativistic Mean Field Theory

    Full text link
    The properties of pairing correlations in symmetric nuclear matter are studied in the relativistic mean field (RMF) theory with the effective interaction PK1. Considering well-known problem that the pairing gap at Fermi surface calculated with RMF effective interactions are three times larger than that with Gogny force, an effective factor in the particle-particle channel is introduced. For the RMF calculation with PK1, an effective factor 0.76 give a maximum pairing gap 3.2 MeV at Fermi momentum 0.9 fm1^{-1}, which are consistent with the result with Gogny force.Comment: 14 pages, 6 figures

    Variational quantum simulation of general processes

    Full text link
    Variational quantum algorithms have been proposed to solve static and dynamic problems of closed many-body quantum systems. Here we investigate variational quantum simulation of three general types of tasks---generalised time evolution with a non-Hermitian Hamiltonian, linear algebra problems, and open quantum system dynamics. The algorithm for generalised time evolution provides a unified framework for variational quantum simulation. In particular, we show its application in solving linear systems of equations and matrix-vector multiplications by converting these algebraic problems into generalised time evolution. Meanwhile, assuming a tensor product structure of the matrices, we also propose another variational approach for these two tasks by combining variational real and imaginary time evolution. Finally, we introduce variational quantum simulation for open system dynamics. We variationally implement the stochastic Schr\"odinger equation, which consists of dissipative evolution and stochastic jump processes. We numerically test the algorithm with a six-qubit 2D transverse field Ising model under dissipation.Comment: 18 page
    corecore